Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Sci Immunol ; 7(70): eabj8301, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35427178

ABSTRACT

Innate lymphoid cells (ILCs) are highly plastic and predominantly mucosal tissue-resident cells that contribute to both homeostasis and inflammation depending on the microenvironment. The discovery of naïve-like ILCs suggests an ILC differentiation process that is akin to naïve T cell differentiation. Delineating the mechanisms that underlie ILC differentiation in tissues is crucial for understanding ILC biology in health and disease. Here, we showed that tonsillar ILCs expressing CD45RA lacked proliferative activity, indicative of cellular quiescence. CD62L distinguished two subsets of CD45RA+ ILCs. CD45RA+CD62L+ ILCs (CD62L+ ILCs) resembled circulating naïve ILCs because they lacked the transcriptional, metabolic, epigenetic, and cytokine production signatures of differentiated ILCs. CD45RA+CD62L- ILCs (CD62L- ILCs) were epigenetically similar to CD62L+ ILCs but showed a transcriptional, metabolic, and cytokine production signature that was more akin to differentiated ILCs. CD62L+ and CD62L- ILCs contained uni- and multipotent precursors of ILC1s/NK cells and ILC3s. Differentiation of CD62L+ and CD62L- ILCs led to metabolic reprogramming including up-regulation of genes associated with glycolysis, which was needed for their effector functions after differentiation. CD62L- ILCs with preferential differentiation capacity toward IL-22-producing ILC3s accumulated in the inflamed mucosa of patients with inflammatory bowel disease. These data suggested distinct differentiation potential of CD62L+ and CD62L- ILCs between tissue microenvironments and identified that manipulation of these cells is a possible approach to restore tissue-immune homeostasis.


Subject(s)
Immunity, Innate , Killer Cells, Natural , Cell Differentiation , Humans , Inflammation , Lymphocyte Activation
2.
Immunity ; 54(2): 291-307.e7, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33450188

ABSTRACT

The role of innate immune cells in allergen immunotherapy that confers immune tolerance to the sensitizing allergen is unclear. Here, we report a role of interleukin-10-producing type 2 innate lymphoid cells (IL-10+ ILC2s) in modulating grass-pollen allergy. We demonstrate that KLRG1+ but not KLRG1- ILC2 produced IL-10 upon activation with IL-33 and retinoic acid. These cells attenuated Th responses and maintained epithelial cell integrity. IL-10+ KLRG1+ ILC2s were lower in patients with grass-pollen allergy when compared to healthy subjects. In a prospective, double-blind, placebo-controlled trial, we demonstrated that the competence of ILC2 to produce IL-10 was restored in patients who received grass-pollen sublingual immunotherapy. The underpinning mechanisms were associated with the modification of retinol metabolic pathway, cytokine-cytokine receptor interaction, and JAK-STAT signaling pathways in the ILCs. Altogether, our findings underscore the contribution of IL-10+ ILC2s in the disease-modifying effect by allergen immunotherapy.


Subject(s)
Interleukin-10/metabolism , Lymphocytes/immunology , Rhinitis, Allergic, Seasonal/immunology , Sublingual Immunotherapy/methods , Adult , Allergens/immunology , Double-Blind Method , Female , Humans , Immune Tolerance , Immunity, Innate , Janus Kinases/metabolism , Lectins, C-Type/metabolism , Male , Middle Aged , Placebo Effect , Poaceae/immunology , Pollen/immunology , Receptors, Immunologic/metabolism , Rhinitis, Allergic, Seasonal/therapy , STAT Transcription Factors/metabolism , Signal Transduction , Th2 Cells/immunology , Treatment Outcome , Vitamin A/metabolism , Young Adult
3.
Sci Immunol ; 6(55)2021 01 29.
Article in English | MEDLINE | ID: mdl-33514640

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) orchestrate protective type 2 immunity and have been implicated in various immune disorders. In the mouse, circulatory inflammatory ILC2s (iILC2s) were identified as a major source of type 2 cytokines. The human equivalent of the iILC2 subset remains unknown. Here, we identify a human inflammatory ILC2 population that resides in inflamed mucosal tissue and is specifically marked by surface CD45RO expression. CD45RO+ ILC2s are derived from resting CD45RA+ ILC2s upon activation by epithelial alarmins such as IL-33 and TSLP, which is tightly linked to STAT5 activation and up-regulation of the IRF4/BATF transcription factors. Transcriptome analysis reveals marked similarities between human CD45RO+ ILC2s and mouse iILC2s. Frequencies of CD45RO+ inflammatory ILC2 are increased in inflamed mucosal tissue and in the circulation of patients with chronic rhinosinusitis or asthma, correlating with disease severity and resistance to corticosteroid therapy. CD45RA-to-CD45RO ILC2 conversion is suppressed by corticosteroids via induction of differentiation toward an immunomodulatory ILC2 phenotype characterized by low type 2 cytokine and high amphiregulin expression. Once converted, however, CD45RO+ ILC2s are resistant to corticosteroids, which is associated with metabolic reprogramming resulting in the activation of detoxification pathways. Our combined data identify CD45RO+ inflammatory ILC2s as a human analog of mouse iILC2s linked to severe type 2 inflammatory disease and therapy resistance.


Subject(s)
Asthma/drug therapy , Glucocorticoids/pharmacology , Leukocyte Common Antigens/metabolism , Lymphocytes/immunology , Nasal Polyps/drug therapy , Adolescent , Adult , Aged , Asthma/diagnosis , Asthma/immunology , Drug Resistance/immunology , Female , Glucocorticoids/therapeutic use , Humans , Immunity, Innate , Lymphocytes/metabolism , Male , Middle Aged , Nasal Polyps/immunology , Severity of Illness Index , Young Adult
4.
Nat Rev Immunol ; 20(9): 552-565, 2020 09.
Article in English | MEDLINE | ID: mdl-32107466

ABSTRACT

Innate lymphoid cells (ILCs) are important for tissue homeostasis and for the initiation of immune responses. Based on their transcriptional regulation and cytokine profiles, ILCs can be categorized into five subsets with defined phenotypes and functional profiles, but they also have the ability to adapt to local environmental cues by changing these profiles. This plasticity raises the question of the extent to which the cytokine production profiles of ILCs are pre-programmed or are a reflection of the tissue microenvironment. Here, we review recent advances in research on ILCs, with a focus on the plasticity of these cells. We highlight the ability of ILCs to communicate with the surrounding microenvironment and discuss the possible consequences of ILC plasticity for our understanding of the biological roles of these cells. Finally, we discuss how we might use this knowledge of ILC plasticity to develop or improve options for the treatment of inflammatory diseases.


Subject(s)
Immunity, Innate , Lymphocyte Subsets/immunology , Animals , Cell Plasticity , Humans
5.
Sci Immunol ; 4(39)2019 09 06.
Article in English | MEDLINE | ID: mdl-31492710

ABSTRACT

T helper 2-skewed regulatory T cells in the skin use GATA3 to suppress local profibrotic type 2 cytokine production. See the related Research Article by Kalekar et al.


Subject(s)
Skin , T-Lymphocytes, Regulatory , Fibrosis , Humans
7.
J Exp Med ; 216(8): 1762-1776, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31201208

ABSTRACT

Recently, human ILCs that express CD117 and CD127 but lack CRTH2 and NKp44 have been shown to contain precursors of ILC1, ILC2, and ILC3. However, these ILCs have not been extensively characterized. We performed an unbiased hierarchical stochastic neighbor embedding (HSNE) analysis of the phenotype of peripheral blood CD117+ ILCs, which revealed the presence of three major subsets: the first expressed NKp46, the second expressed both NKp46 and CD56, and the third expressed KLRG1, but not NKp46 or CD56. Analysis of their cytokine production profiles and transcriptome revealed that NKp46+ ILCs predominantly develop into ILC3s; some of them can differentiate into ILC1/NK-like cells, but they are unable to develop into ILC2s. In contrast, KLRG1+ ILCs predominantly differentiate into ILC2s. Single-cell cultures demonstrate that KLRG1+ ILCs can also differentiate into other ILC subsets depending on the signals they receive. Epigenetic profiling of KLRG1+ ILCs is consistent with the broad differentiation potential of these cells.


Subject(s)
Cell Differentiation/immunology , Killer Cells, Natural/metabolism , Lectins, C-Type/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , Animals , Blood Donors , Cell Line , Cytokines/metabolism , Epigenesis, Genetic , Humans , Immunity, Innate , Killer Cells, Natural/immunology , Mice , Natural Cytotoxicity Triggering Receptor 2/metabolism , Palatine Tonsil/pathology , Phenotype , Transcriptome
8.
Nat Commun ; 10(1): 2162, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31089134

ABSTRACT

Innate lymphoid cells (ILCs) are crucial for the immune surveillance at mucosal sites. ILCs coordinate early eradication of pathogens and contribute to tissue healing and remodeling, features that are dysfunctional in patients with cystic fibrosis (CF). The mechanisms by which ILCs contribute to CF-immunopathology are ill-defined. Here, we show that group 2 ILCs (ILC2s) transdifferentiated into IL-17-secreting cells in the presence of the epithelial-derived cytokines IL-1ß, IL-23 and TGF-ß. This conversion is abrogated by IL-4 or vitamin D3. IL-17 producing ILC2s induce IL-8 secretion by epithelial cells and their presence in nasal polyps of CF patients is associated with neutrophilia. Our data suggest that ILC2s undergo transdifferentiation in CF nasal polyps in response to local cytokines, which are induced by infectious agents.


Subject(s)
Cell Plasticity/immunology , Cystic Fibrosis/immunology , Inflammation/immunology , Nasal Polyps/immunology , Th17 Cells/immunology , Adult , Animals , Cell Line , Cystic Fibrosis/blood , Cystic Fibrosis/pathology , Female , Humans , Immunity, Innate , Inflammation/blood , Inflammation/pathology , Interleukin-17/immunology , Interleukin-17/metabolism , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Interleukin-23/immunology , Interleukin-23/metabolism , Male , Mice , Middle Aged , Nasal Mucosa/cytology , Nasal Mucosa/immunology , Nasal Mucosa/pathology , Nasal Polyps/blood , Nasal Polyps/pathology , Neutrophils/immunology , Young Adult
9.
Allergy ; 74(10): 1898-1909, 2019 10.
Article in English | MEDLINE | ID: mdl-30934128

ABSTRACT

BACKGROUND: Activated eosinophils cause major pathology in stable and exacerbating asthma; however, they can also display protective properties like an extracellular antiviral activity. Initial murine studies led us to further explore a potential intracellular antiviral activity by eosinophils. METHODS: To follow eosinophil-virus interaction, respiratory syncytial virus (RSV) and influenza virus were labeled with a fluorescent lipophilic dye (DiD). Interactions with eosinophils were visualized by confocal microscopy, electron microscopy, and flow cytometry. Eosinophil activation was assessed by both flow cytometry and ELISA. In a separate study, eosinophils were depleted in asthma patients using anti-IL-5 (mepolizumab), followed by a challenge with rhinovirus-16 (RV16). RESULTS: DiD-RSV and DiD-influenza rapidly adhered to human eosinophils and were internalized and inactivated (95% in ≤ 2 hours) as reflected by a reduced replication in epithelial cells. The capacity of eosinophils to capture virus was reduced up to 75% with increasing severity of asthma. Eosinophils were activated by virus in vitro and in vivo. In vivo this correlated with virus-induced loss of asthma control. CONCLUSIONS: This previously unrecognized and in asthma attenuated antiviral property provides a new perspective to eosinophils in asthma. This is indicative of an imbalance between protective and cytotoxic properties by eosinophils that may underlie asthma exacerbations.


Subject(s)
Asthma/etiology , Eosinophils/metabolism , Virus Diseases/complications , Virus Diseases/virology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Asthma/diagnosis , Asthma/metabolism , Disease Models, Animal , Eosinophils/pathology , Eosinophils/ultrastructure , Humans , Influenza A virus/physiology , Lectins, C-Type/metabolism , Lung/immunology , Lung/metabolism , Lung/pathology , Mice , Mice, Transgenic , Respiratory Function Tests
12.
Am J Respir Crit Care Med ; 199(4): 508-517, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30192638

ABSTRACT

RATIONALE: Eosinophils drive pathophysiology in stable and exacerbating eosinophilic asthma, and therefore treatment is focused on the reduction of eosinophil numbers. Mepolizumab, a humanized monoclonal antibody that neutralizes IL-5 and efficiently attenuates eosinophils, proved clinically effective in severe eosinophilic asthma but not in mild asthma. OBJECTIVES: To study the effect of mepolizumab on virus-induced immune responses in mild asthma. METHODS: Patients with mild asthma, steroid-naive and randomized for eosinophil numbers, received 750 mg mepolizumab intravenously in a placebo-controlled double-blind trial, 2 weeks after which patients were challenged with rhinovirus (RV) 16. FEV1, FVC, fractional exhaled nitric oxide, symptom scores (asthma control score), viral load (PCR), eosinophil numbers, humoral (luminex, ELISA), and cellular (flow cytometry) immune parameters in blood, BAL fluid, and sputum, before and after mepolizumab and RV16, were assessed. MEASUREMENTS AND MAIN RESULTS: Mepolizumab attenuated baseline blood eosinophils and their activation, attenuated trendwise sputum eosinophils, and enhanced circulating natural killer cells. Mepolizumab did not affect FEV1, FVC, and fractional exhaled nitric oxide, neither at baseline nor after RV16. On RV16 challenge mepolizumab did not prevent eosinophil activation but did enhance local B lymphocytes and macrophages and reduce neutrophils and their activation. Mepolizumab also enhanced secretory IgA and reduced tryptase in BAL fluid. Finally, mepolizumab affected particularly RV16-induced macrophage inflammatory protein-3a, vascular endothelial growth factor-A, and IL-1RA production in BAL fluid. CONCLUSIONS: Mepolizumab failed to prevent activation of remaining eosinophils and changed RV16-induced immune responses in mild asthma. Although these latter effects likely are caused by attenuated eosinophil numbers, we cannot exclude a role for basophils. Clinical trial registered with www.clinicaltrials.gov (NCT 01520051).


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Asthma/drug therapy , B-Lymphocytes/immunology , Macrophages/immunology , Neutrophils/immunology , Picornaviridae Infections/immunology , Rhinovirus , Asthma/virology , Bronchoalveolar Lavage Fluid/cytology , Double-Blind Method , Female , Forced Expiratory Volume , Humans , Interleukin-5/antagonists & inhibitors , Male , Picornaviridae Infections/complications , Rhinovirus/immunology , Vital Capacity , Young Adult
13.
Immunol Rev ; 286(1): 74-85, 2018 11.
Article in English | MEDLINE | ID: mdl-30294969

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are the most well defined group of ILCs. ILC2 development is controlled by the GATA-3 transcription factor and these cells produce archetypal type 2 cytokines, such as IL-5 and IL-13. These cytokines mediate parasite expulsion and tissue repair, but also contribute to type 2 inflammatory diseases, including allergy, asthma and chronic rhinosinusitis with nasal polyps. In response to tightly regulated local environmental cues ILCs can generate characteristics of other subtypes, a process known as plasticity. Recent advances in the ILC2 field has led to the discovery that ILC2s can promptly shift to functional IFN-γ-producing ILC1s or IL-17-producing ILC3s, depending on the cytokines and chemokines produced by antigen presenting cells or epithelial cells. Due to yet unknown triggers, this complex network of signals may become dysregulated. In this review, we will discuss general ILC characteristic, ILC2 development, plasticity, memory function, and implications in disease.


Subject(s)
Immune System Diseases/immunology , Immunity, Innate , Lymphocytes/immunology , Animals , Cell Differentiation , Cell Plasticity , Cytokines/metabolism , Humans , Lymphocyte Activation , Th2 Cells/immunology
14.
Curr Protoc Immunol ; 122(1): e55, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29957859

ABSTRACT

Innate lymphoid cells (ILCs) are innate immune cells of lymphoid origin that have important effector and regulatory functions in the first line of defense against pathogens, but also regulate tissue homeostasis, remodeling, and repair. Their function mirrors T helper cells and cytotoxic CD8+ T lymphocytes, but they lack expression of rearranged antigen-specific receptors. Distinct ILC subsets are classified in group 1 ILCs (ILC1s), group 2 ILCs (ILC2s), and group 3 ILCs (ILC3s and lymphoid tissue-inducer cells), based on the expression of transcription factors and the cytokines they produce. As the frequency of ILCs is low, their isolation requires extensive depletion of other cell types. The lack of unique cell surface antigens further complicates the identification of these cells. Here, methods for ILC isolation and characterization from human peripheral blood and different tissues are described. © 2018 by John Wiley & Sons, Inc.

15.
Curr Opin Pulm Med ; 24(1): 11-17, 2018 01.
Article in English | MEDLINE | ID: mdl-29036021

ABSTRACT

PURPOSE OF REVIEW: Innate lymphoid cells (ILCs) act as early orchestrators of the immune response, tissue repair, and maintenance of barrier homeostasis. This review summarizes recent findings of the role of ILCs in airway disease and highlights ongoing developments in clinical applications and treatment options. RECENT FINDINGS: On the basis of the transcription factors required for their development and cytokine profiles, ILCs have been classified into three subsets that resemble those of T-helper subtypes. ILCs produce multiple cytokines in response to signals from activated cells in their local environment. Recent studies in both humans and mice showed that ILCs are located at barrier surfaces and play critical roles in inflammatory diseases of the upper and lower airways. SUMMARY: The discovery of ILCs and their characterization in homeostatic and diseased conditions, have brought new insights into innate and adaptive immune responses at mucosal barrier surfaces. The recent progress in understanding the role of ILCs in airway inflammation directs translation of fundamental studies into clinical applications. This knowledge can be useful for future clinical practice.


Subject(s)
Immunity, Innate/immunology , Inflammation/immunology , Lymphocytes/metabolism , Respiratory Mucosa/immunology , Animals , Cell Differentiation/immunology , Humans , Inflammation/physiopathology , Mice , Respiratory Mucosa/physiopathology , T-Lymphocytes, Helper-Inducer/immunology , Transcription Factors
16.
Nat Rev Rheumatol ; 13(3): 164-173, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28148916

ABSTRACT

Innate lymphoid cells (ILCs) are important in the regulation of barrier homeostasis. These cells do not express T cell receptors but share many functional similarities with T helper cells and cytotoxic CD8+ T lymphocytes. ILCs are divided into three groups, namely group 1 ILCs, group 2 ILCs and group 3 ILCs, based on the transcription factors they depend on for their development and function, and the cytokines they produce. Emerging data indicate that ILCs not only have protective functions but can also have detrimental effects when dysregulated, leading to chronic inflammation and autoimmune diseases, including asthma, inflammatory bowel disease, graft-versus-host disease, psoriasis, rheumatoid arthritis and atopic dermatitis. Elucidation of the cytokine pathways involved in various autoimmune diseases - and the identification of ILCs as potent producers of these cytokines - points towards a potential role for these cellular players in the pathophysiology of these diseases. In this Review we discuss the current knowledge of the role of ILCs in the pathogenesis of rheumatic and other autoimmune diseases.


Subject(s)
Autoimmunity/physiology , Lymphocytes/physiology , Rheumatic Diseases/physiopathology , Autoimmune Diseases/physiopathology , Humans , Immunity, Innate/physiology , Inflammatory Bowel Diseases/physiopathology , Rheumatic Diseases/immunology , Spondylarthropathies/physiopathology
17.
Cell Rep ; 18(7): 1761-1773, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28199847

ABSTRACT

Here, we characterize a subset of ILC3s that express Neuropilin1 (NRP1) and are present in lymphoid tissues, but not in the peripheral blood or skin. NRP1+ group 3 innate lymphoid cells (ILC3s) display in vitro lymphoid tissue inducer (LTi) activity. In agreement with this, NRP1+ ILC3s are mainly located in proximity to high endothelial venules (HEVs) and express cell surface molecules involved in lymphocyte migration in secondary lymphoid tissues via HEVs. NRP1 was also expressed on mouse fetal LTi cells, indicating that NRP1 is a conserved marker for LTi cells. Human NRP1+ ILC3s are primed cells because they express CD45RO and produce higher amounts of cytokines than NRP1- cells, which express CD45RA. The NRP1 ligand vascular endothelial growth factor A (VEGF-A) served as a chemotactic factor for NRP1+ ILC3s. NRP1+ ILC3s are present in lung tissues from smokers and patients with chronic obstructive pulmonary disease, suggesting a role in angiogenesis and/or the initiation of ectopic pulmonary lymphoid aggregates.


Subject(s)
Lymphocytes/metabolism , Lymphoid Tissue/metabolism , Neuropilin-1/metabolism , Animals , Cell Movement/physiology , Cells, Cultured , Cytokines/metabolism , Humans , Leukocyte Common Antigens/metabolism , Mice , Neovascularization, Pathologic/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Vascular Endothelial Growth Factor A/metabolism
18.
Nat Immunol ; 17(6): 636-45, 2016 06.
Article in English | MEDLINE | ID: mdl-27111145

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) secrete type 2 cytokines, which protect against parasites but can also contribute to a variety of inflammatory airway diseases. We report here that interleukin 1ß (IL-1ß) directly activated human ILC2s and that IL-12 induced the conversion of these activated ILC2s into interferon-γ (IFN-γ)-producing ILC1s, which was reversed by IL-4. The plasticity of ILCs was manifested in diseased tissues of patients with severe chronic obstructive pulmonary disease (COPD) or chronic rhinosinusitis with nasal polyps (CRSwNP), which displayed IL-12 or IL-4 signatures and the accumulation of ILC1s or ILC2s, respectively. Eosinophils were a major cellular source of IL-4, which revealed cross-talk between IL-5-producing ILC2s and IL-4-producing eosinophils. We propose that IL-12 and IL-4 govern ILC2 functional identity and that their imbalance results in the perpetuation of type 1 or type 2 inflammation.


Subject(s)
Cell Plasticity , Eosinophils/immunology , Immunity, Innate , Interleukin-12/metabolism , Interleukin-1beta/metabolism , Interleukin-4/metabolism , Lymphocytes/immunology , Nasal Polyps/immunology , Pneumonia/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Rhinitis/immunology , Sinusitis/immunology , Animals , Cell Differentiation , Cells, Cultured , Female , Humans , Interferon-gamma/metabolism , Lymphocyte Activation , Mice , Mice, SCID , Th1 Cells/immunology , Th1-Th2 Balance , Th2 Cells/immunology
19.
Physiol Rep ; 3(3)2015 Mar.
Article in English | MEDLINE | ID: mdl-25780096

ABSTRACT

Severe respiratory syncytial virus (RSV) disease is a frequent cause of acute respiratory distress syndrome (ARDS) in young children, and is associated with marked lung epithelial injury and neutrophilic inflammation. Experimental studies on ARDS have shown that inhibition of apoptosis in the lungs reduces lung epithelial injury. However, the blockade of apoptosis in the lungs may also have deleterious effects by hampering viral clearance, and importantly, by enhancing or prolonging local proinflammatory responses. The aim of this study was to determine the effect of the broad caspase inhibitor Z-VAD(OMe)-FMK (zVAD) on inflammation and lung injury in a mouse pneumovirus model for severe RSV disease. Eight- to 11-week-old female C57BL/6OlaHsd mice were inoculated with the rodent-specific pneumovirus pneumonia virus of mice (PVM) strain J3666 and received multiple injections of zVAD or vehicle (control) during the course of disease, after which they were studied for markers of apoptosis, inflammation, and lung injury on day 7 after infection. PVM-infected mice that received zVAD had a strong increase in neutrophil numbers in the lungs, which was associated with decreased neutrophil apoptosis. Furthermore, zVAD treatment led to higher concentrations of several proinflammatory cytokines in the lungs and more weight loss in PVM-infected mice. In contrast, zVAD did not reduce apoptosis of lung epithelial cells and did not affect the degree of lung injury, permeability, and viral titers in PVM disease. We conclude that zVAD has an adverse effect in severe pneumovirus disease in mice by enhancing the lung proinflammatory response.

20.
J Control Release ; 161(2): 363-76, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22245687

ABSTRACT

The ideal vaccine is a simple and stable formulation which can be conveniently administered and provides life-long immunity against a given pathogen. The development of such a vaccine, which should trigger broad and strong B-cell and T-cell responses against antigens of the pathogen in question, is highly dependent on tailored vaccine delivery approaches. This review addresses vaccine delivery in its broadest scope. We discuss the needs and challenges in the area of vaccine delivery, including restrictions posed by specific target populations, potentials of dedicated stable formulations and devices, and the use of adjuvants. Moreover, we address the current status and perspectives of vaccine delivery via several routes of administration, including non- or minimally invasive routes. Finally we suggest possible directions for future vaccine delivery research and development.


Subject(s)
Drug Delivery Systems , Vaccines/administration & dosage , Adjuvants, Immunologic/administration & dosage , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...